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ABSTRACT 
The emerging field of metabolomics enables researchers to 
measure concentrations of large numbers of metabolites in 
biofluids, and to interpret them in connection with the underlying 
metabolic network, which poses a significant challenge for 
manual analysis. Given a set of observations on metabolite 
concentration changes, our goal in this study is to employ 
automated reasoning, and provide researchers with possible 
metabolic action scenarios that may have occurred in the body to 
produce the observed metabolite changes. Our proposed 
methodology, called the Observed Metabolite Analysis, is to (1) 
computationally chase the implications of a given a set of 
metabolite concentration change observations in body fluids, 
relative to a control subject, (2) eliminate metabolic action 
scenarios, called hypothesis, that are invalid (i.e., those scenarios 
that could not have happened) (e.g., increased protein turnover), 
and (3) rank possibly valid metabolic action scenarios on the basis 
of pre-defined flux ratio information. We computationally 
evaluate the proposed methodology with typical metabolomics 
data, and demonstrate that (a) through consistency analysis 
against a small number of measured metabolite concentration 
changes, over 90% of the automatically generated hypotheses are 
invalidated with no manual analysis, (b) using summarization 
techniques, the entire hypothesis set is represented by a much 
smaller (2% of the original) hypothesis set, and (c) performing 
hypothesis generation and consistency checking in an interleaved 
manner leads to over 95% improvement in running time.   

1. INTRODUCTION 
Metabolites are intermediates and products of metabolism; 
the metabolome refers to the complete set of metabolites in 
a cell, a tissue, or an organism; and, metabolomics is the 
study of the distributions (profiles, concentrations) of the 
metabolites in the metabolome [1, 2]. Metabolites in the 
metabolome have low-molecular weight [3], and are ideal 
for sensitively analyzing changes in a biological system [4].  
With the recent advances in experimental technologies, 
such as gas chromatography and mass spectrometry, the 

number of metabolites that can be measured in biofluids 
has rapidly increased. In order to identify the metabolic 
mechanisms that lead to changes in the concentrations of 
given metabolites, one needs to interpret the metabolic 
significance of the observed changes. This necessitates a 
time consuming, extensive and manual cross-referencing of 
metabolic pathways, in order to critically evaluate the data.  
The large number and breath of the metabolites represents a 
challenge to an informed interpretation of the results, when 
the goal is to determine the biochemical mechanisms that 
are responsible for the observed changes.  There is thus a 
need for computational tools to help biologists and clinical 
researchers to derive meaningful interpretations of 
metabolomics data. This paper proposes and evaluates 
techniques for automated interpretation and analysis of 
metabolomics data via existing metabolic networks. 
We make the following assumptions about our model.  
(a) A complete metabolic network is pre-captured and 

available in a metabolic network database. 
(b) The metabolic network database captures tissue-level 

compartmentalization.  
(c) The only input that the user provides to the system is a 

set of bio-fluid metabolite level observations (referred 
to as “observed metabolite changes”) in the form of 
“increase”, “decrease”, or “no change”, with respect to a 
control subject (i.e., metabolomics data); and  

(d)  The system is studied in a stable steady state; that 
is, the rate of formation of every metabolite is equal to 
its rate of degradation. 

This research has two goals. 
1. Goal 1: Specify those metabolic action scenarios that 

are invalid (i.e., could not have happened--given the set 
of observed metabolite concentrations), which results in 
a set of “maybe-valid” metabolic action scenarios (that 
are then to be manually evaluated by biologists). In the 
rest of the paper, we refer to such metabolic action 
scenarios as (low-level) hypothesis.  

2. Goal 2: Map, as much as possible, the maybe-valid 
metabolic action scenarios to disease and/or 
physiological conditions, giving users possible clues on 
the implications of the set of observed metabolites. We 
also refer to such mappings as (high-level) hypothesis.  
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In this paper, we concentrate only on goal 1, though we 
briefly describe how to achieve goal 2. We start with a 
simple example (that illustrates a case involving goal 2). 
Example 1.1. Consider five changes in the concentration of 
metabolites that were observed in the blood of patients:  
(Glutamine, “Increase by 4-fold”), (Alanine, “Increase by 
2-fold”), (Urea, “Decrease by 0.5-fold”), (BCAA, “no 
change”), (Glucose, “Increase by 1.3-fold”), where BCAA 
refers to branched-chain aminoacids (i.e., valine, leucine, 
isoleucine). The metabolic fate of glutamine is as follows: 
Observation 1: The relative concentration of glutamine 
may increase due to (i) an increase in its production by 
muscle as a result of increased protein turnover, and/or (ii) 
and increased production by liver, where its synthesis 
serves as a sink for ammonia, due to a dysfunctional urea 
cycle, and/or (iii) decreased uptake by kidney due to the 
decreased level of activity of glutaminase, and/or (iv) the 
decreased rate of glutamine uptake by the gut due to a 
lowered activity level of glutaminase. 
We turn the above observations into four separate (high-
level) hypotheses (which are maintained in the metabolic 
network database): The cause of increase in the 
concentration of glutamine is due to: H1: an increase in its 
rate of production by muscle, as a result of possible 
increase in protein turnover, H2: increased hepatic 
production, as a result of dysfunction of a key enzyme in 
the urea cycle. H3: decreased glutaminase activity in 

kidney. H4: decreased glutaminase activity in gut. 
With respect to these four hypotheses and the 
five metabolite concentration change 
observations, our goal is to employ organ-
/tissue-based metabolic pathway knowledge to 
choose between the four hypotheses listed 
above. We start by redefining the notion of 
hypothesis in our context, as a set of statements 
on the concentration changes of metabolites, 
created to explain a possible biological 
mechanism leading to the observed metabolite 
concentration changes. Hypothesis generation 
has four steps, with the first two being:  

(1) Chase Process generates hypotheses by 
chasing the observed metabolite concentration 
changes within the human metabolic network, 
and employs (multiple variations of) the 
metabolic reasoning: if the concentration of a 
metabolite m is observed to decrease, then either 
it is consumed more and/or produced less than it 
was before a perturbation. And, if the relative 
concentration of a metabolite m is observed to 

increase, then either it is consumed less and/or 
produced more than it was before a perturbation. 

(2) Derived changes in the concentration of a metabolite 
are obtained from (a) the observed metabolite 
concentration changes and (b) the whole metabolic 
network. We give an example for steps 1 and 2. 

Example 1.2. Consider the change in the concentration of 
5 metabolites in Example 1.1. 
Goal. In the light of the observed events (i.e., blood test 
results), by employing computational techniques, interpret 
the increase in the concentration of glutamine in blood, and 
determine which of the four possible alternative 
mechanisms (hypotheses) may have led to this increase. 
Figure 1 shows (part of) a human metabolic network 
related to the metabolism of branched chain amino acids. 
Verifying that hypothesis H1 is invalid: Hypothesis H1 
implies an increased concentration of BCAAs due to 
elevated protein turnover; but the measured concentration 
for BCAAs indicates no such major changes. Hence, based 
on the metabolic network of Figure 1, we conclude that H1 
is not valid, i.e., an increase in glutamine concentration is 
not due to increased muscle protein turnover. 
Verifying that hypothesis H2 may be valid (M-Valid): 
The cause of increase in glutamine may be due to an 
increased production by the liver. Next, on the basis of the 
five observed metabolite changes, we show that hypothesis 
H2 is indeed M-Valid. The path representing hypothesis H2 
is marked with label “H2” in Figure 2. This scenario, from 
the root to the leaf node, basically states that: (a) 
Gln_Blood↑: Glutamine increases, because (b) Gln_Lvr↑: 
it is produced more by the liver, which is due to (c) NH3-
Lvr↑: accumulation of ammonia (NH3) in liver, due to a 
decreased synthesis of urea possibly caused by dysfunction 
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of urea cycle leading to Urea-Lvr↓, and to (d) Urea↓: a 
decreased urea in the blood. Thus, we conclude that 
hypothesis H2 is validated and may have occurred, i.e., “H2 
is M-Valid”. 
Similar to H1, H3 is not valid due to the conflict with the 
observed concentration change of glucose, and H4 is not 
valid due to the conflict with the observed concentrate 
change of Alanine.                 ■ End of Example 1.2. 
Examples 1.1 and 1.2 illustrate the use of automated ways 
of eliminating hypotheses from among a list of likely 
alternatives known a priori as possible.  A broader way of 
using our approach is to evaluate all possible hypotheses 
(either in the whole metabolic network or its sub-network), 
eliminate the ones that are invalid, and rank and list the 
ones that are M(aybe)-Valid. In the rest of this paper, we 
formalize and present our within this latter alternative. 
In addition steps 1 and 2 above, we use two more steps. 
(3) Hypothesis likelihood is evaluated based on “expected 
flux ratios” of metabolites in reactions/pathways.   
(4) Physiological condition mapping is done based on the 
overlap between known biomarkers for physiological 
conditions and the set of metabolites in a hypothesis.  

Section 3 presents an evaluation of our approach using a 
typical metabolomics data set. First, we empirically show 
that the majority (over 90%) of possible hypotheses can be 
eliminated via employing a reasonably small number of 
observations. Second, our proposed hypothesis 
summarization methods allow for the representation of the 
whole hypothesis set with size as small as 2% of the 
original hypothesis set. Third, employing an early 
termination strategy during the hypothesis generation 
improves running time up to 97%. Thus, our automated 
interpretation approach is effective and useful. 
This paper is organized as follows. In section 2, we discuss 
related work. Section 3 formalizes our model (referred as 
OMA) for metabolomics analysis. In section 4, we 

experimentally evaluate OMA, and 
section 5 concludes. 

2. RELATED WORK 
For related work to goal 1 (eliminating 
invalid metabolic scenarios, and locating 
possible (M-valid) ones), our proposed 
OMA technique can be considered in the 
general category of metabolic analysis 
techniques which include metabolic 

control analysis (MCA) [5], flux balance 
analysis (FBA) [6], metabolic flux 
analysis [7], and metabolic pathway 
analysis (i.e., elementary flux modes and 
extreme pathways) [8]. For related work 
to goal 2, we are not aware of any 
computational or algorithmic techniques. 
Next, we briefly summarize related 

studies and compare to our proposed 
framework. 

Metabolic control analysis (MCA) aims to characterize 
the sensitivity of metabolic responses against changes in 
enzyme activities or parameters [5]. MCA, through the 
summation and the connectivity theorems, allows one to 
relate the global (systemic) properties of the pathway to the 
(local) properties of individual enzymes.  

 Flux balance analysis (FBA) computes stationary fluxes 
in metabolic networks. It is based on convex analysis 
imposing an objective function subject to several 
constraints, to determine the metabolic flux vector.  
Usually, the fluxes are determined to maximize a specific 
network output, e.g., the biomass which is a reasonable 
objective for primitive cells such as bacteria, but not 
necessarily for complex eukaryotic cells. Further critiques 
of FBA include: (a) it identifies only one optimal solution 
(while there may be other optimal/suboptimal solutions), 
(b) flux distributions predicted by FBA are hypothetical (as 
they depend on the choice of the flux criteria) [9]. 
Metabolic pathway analysis (MPA) identifies the 
topology of cellular mechanism based on the stoichiometry 
and thermodynamic constraints of reactions. Two main 
techniques in MPA are elementary flux mode analysis 
(EMA) [10], and extreme pathways analysis (EPA) [8]. In 
comparison with FBA, MPA can identify all metabolic flux 
vectors; but it also has high computational complexity. (See 
[8] for an excellent review of EMA.) Free applications that 
compute elementary flux modes include COPASI [11], 
Metatool [12], SNA [13], FluxAnalyzer [14], YANA [15].  
Comparison. Next we briefly list the differences between 
the MCA, FBA, EMA, and OMA approaches: 
►Different goals. The four approaches are useful in 
different contexts and have different goals. (a) MCA 
focuses on “control as a property of the whole system”. 
One can measure the effect of single enzyme perturbations 

Figure 2. Hypothesis Tree 

 



on the system. (b) EMA can be used for tasks like the 
recognition of operational elementary modes, finding all 
optimal paths, analysis of network flexibility [14]. 
However, identifying the weighting factors to determine the 
contributions of each elementary mode is difficult, if not 
impossible [16]. (c) OMA, working with the whole (and 
possibly large) metabolic network within a multi-tissue 
environment (i.e., not within a cell), returns to users a list 
of possible metabolic action scenarios (i.e., M-valid paths) 
as well as their visualizations, allowing users to quickly 
concentrate on locating possibly activated paths for a given 
set of observed metabolite concentration changes.   
►Different underlying fundamentals.  OMA is rule-based, 
and employs graph search algorithms across the whole 
metabolic network. In comparison, MCA and FBA involve 
solving a set of underconstrained differential equations 
corresponding to a possibly smaller metabolic network. 
EMA determines elementary fluxes via a linear 
combination of “null space basis vectors” of the 
stoichiometry matrix [17]. 
►Ease of use. MCA (or FBA), even with the easiest-to-use 
software tools (such as COPASI), requires setup and usage 
expertise, for biologists to use them. The EMA tools and 
YANA do provide user-friendly elementary flux 
derivations and their visualizations. In comparison, OMA 
uses a metabolic pathways database, which already 
contains the metabolic network so that all that a user is 
expected to provide is a set of observed metabolite changes. 
►Modeling-related restrictions/assumptions. MCA and 
EMA have a number of assumptions (e.g., connected 
pathway network) [20] which are not needed for OMA.  
►Computational Complexity. Computational complexity 
of MCA is exponential in the number of reactions involved, 
forcing users to use various compaction, aggregation, and 
clustering techniques. Computational complexity of EMA 
is also exponential [19], and various approaches to tackle 
the high complexity are proposed such as parallel 
computing [20]. In its worst case, OMA is also exponential 
in the number of paths between the root node of the closure 
tree and other nodes. However, metabolic networks form 
sparse graphs, and, for the prototype metabolic network 
used in Section 4, the worst-case complexity has not been a 
limiting factor. 
Relationship to Artificial Intelligence studies. In general, 
our computational modeling and analysis technique can 
also be viewed in the class of qualitative reasoning [21], 
qualitative simulation [22], and qualitative process theory 
[23] in artificial intelligence. In particular, our hypothesis 
formation framework may be viewed as a specialized case 
of hypothesis formation design methods, as developed by 
Karp [24]. There are also some other metabolomics studies, 
which we do not discuss here due to space limitations. 
Please see Wishart [25] for an excellent survey of existing 
computational approaches in metabolomics data generation.  
 

3. MODEL FOR METABOLIC NETWORK-
BASED OBSERVATION ANALYSIS 
This section presents our model for metabolic network-
based observation analysis, and defines chase process rules. 

Def’n (Reaction): A reaction RN(E, S, P) consists of a set 
E of enzymes which collectively consume the metabolite 
set S (i.e., substrates), and produces the metabolite set P 
(i.e., products). The metabolites in S are called co-
substrates of each other. 
Def’n (Metabolic Network): A metabolic network is a 
graph G(V, E) of a vertex set V of reactions and 
metabolites, and a directed edge set E such that there is an 
edge from node u to node v if (i) v is a reaction, and u is a 

substrate of v, or (ii) u is a reaction, and v is a product of u. 
Def’n (Upstream/Downstream): Given a metabolic 
network M and two metabolites mi and mj where mi, mj ∈ 
VM, we say that mi is located downstream of mj or mj is 
located upstream of mi, if there is a path from mj to mi. If 
mi and mj belong to the same reaction as substrates and 
products, respectively, then, we say that mj is located 
immediately upstream of mi or mi is located immediately

Example 3.1. Figure 3 illustrates a hypothetical metabolic 
network. In the reaction with enzyme e9, the metabolites m2 
and m3 are co-substrates. m2 is located upstream of m6, 
while m4 is located immediately upstream of m6. 

 
downstream of mj. 

Def’n (Concentration C of a Metabolite): A metabolite m 
has the concentration 𝐶𝐶𝑚𝑚  before a perturbation and the 
concentration �̂�𝐶𝑚𝑚  after the perturbation.  
Def’n (Observed Event): An observed event 𝐸𝐸𝑜𝑜  (m, c) is a 
pair of a metabolite m and an observation c on the 
concentration of m where c represents a concentration 
change from 𝐶𝐶𝑚𝑚  to �̂�𝐶𝑚𝑚 , and is one of “increase [by X 
fold]”, (ii) “decrease [by X fold]”, or (iii) “no change”.  
Please see example 1.1 for sample observed events. 
Two types of events are possible, namely, observed events 
𝐸𝐸𝑜𝑜  and derived events 𝐸𝐸𝑑𝑑 . All events that are directly stated 
in a biofluid test result are called observed events, while 
those that are derived based on the observed events and the 
structure of a metabolic network are called derived events. 
When there is no need to distinguish between observed and 
derived events, we drop the superscripts from 𝐸𝐸𝑜𝑜  and 𝐸𝐸𝑑𝑑 .  

e5

m1

m2

e6 m4

e9 m5

e8 m3

e7 m6
5 10,d dE E

3
dE

1 6 8, ,o d dE E E

4 11,d dE E

2 7 12, ,o d dE E E

9 13,d dE E  
Figure 3. A hypothetical metabolic network 



3.1 Derived Event Characterization 
Derived events are defined using the following metabolic 
biochemistry reasoning. 

Remark 3.1. If the concentration of a metabolite m is 
observed to decrease after a perturbation, then either it is 
consumed more and/or produced less than before the 
perturbation. Likewise, if the concentration of a metabolite 
m is observed to increase after a perturbation, then either it 
is consumed less and/or produced more than before the 
perturbation. 

Also, reaction rates are controlled by many factors, referred 
to here as reaction-rate-control (RRC) events, involving 
(allosteric or competitive) inhibitors/activators, enzyme (or 
gene) expression rate changes [26]. While modeling each 
of these factors separately is a more precise approach, in 
this paper, as a first step and for simplicity in rules and 
algorithms, we model them all as having only one type, i.e., 
the RRC event. As an example, in hypothesis H2 of 
Example 1.1., Urea↓ is an an RRC-induced event.  

Assume metabolite m is a product of reaction Rp, and a 
substrate of reaction Rs. Then,  
• Increase in concentration of m is caused by: 
o More production due to increase in concentrations of 

substrates in Rp (substrate-induced causality), or 
o Less consumption due to decreased concentrations of a 

co-substrate of m in Rs (co-substrate-induced 
causality), or 

o Less consumption due to an RRC event such as 
increase in the concentration of an inhibitor for Rs, or 
gene/enzyme expression changes for Rs [26]. The RRC 
event also causes “decreased production of product(s) 
of Rs” (RRC-induced causality) 

• Decrease in concentration of m is caused by: 
o Less production due to decreased concentrations of 

substrates in Rp (substrate-induced), and/or 
o More consumption due to increased concentration of a 

co-substrate of m in Rs (co-substrate-induced 
causality), and/or 

o More consumption due to an RRC event, which causes 
an increase in products of Rs (RRC-induced causality). 

Formalizing the above remark and the RRC event, next we 
present the derived event notion. 

Def’n (Negation of a concentration change): Given a 
concentration change ci in an event 𝐸𝐸𝑖𝑖(mi, ci), the negation 
of ci, denoted as ¬ ci, represents the concentration change 
in the opposite direction of ci, e.g., if ci involves an 
“increase”, then ¬ ci = “decrease”. 

Def’n (Derived Event via Remark 3.1): Given a metabolic 
network M, two metabolites mi and mj in V(M), and a 
(derived or observed) event 𝐸𝐸𝑖𝑖(mi, ci), 𝐸𝐸𝑗𝑗𝑑𝑑 (mj, cj) is a 
derived event induced by 𝐸𝐸𝑖𝑖(mi, ci) where cj is determined 

based on ci using one of the three causality rules: 

Example 3.2. Consider Figure 3 and the event  𝐸𝐸1
𝑜𝑜(m4, 

“increase by 2 fold”), which may be either due to an 
increase in m2, decrease in m5, or decrease in m6. Hence, 
one can create three derived events which are induced by 
𝐸𝐸1:  𝐸𝐸3

𝑑𝑑 (m2, “increase”), 𝐸𝐸4
𝑑𝑑 (m5, “decrease”), as well as 

𝐸𝐸5
𝑑𝑑 (m6, “decrease”) due to RRCeffect.  

So far, we have modeled “caused-by” relationships on 
metabolite concentration changes. Next, we model the 
“causes” relationship as creating a (forward) “cascading 
effect”. 
Remark 3.2. (Forward Cascading Effect): If a metabolite 
m is produced less or produced more during a perturbation, 
in the absence of downstream RRC events, it triggers the 
same effect (i.e., increase/ decrease) on the concentrations 
of metabolites that follow m within the metabolic network. 
Finally, increases/decreases in the concentration of some 
metabolites may be caused by two additional factors: (i) 
dietary intake, and (ii) certain physiological processes (e.g., 
muscle breakdown). In order to model such factors, we 
employ the notion of external process, and register them as 
producer/consumers of metabolites. Then, such external 
producers/consumers are treated as regular reactions to 
derive new events. Please see [29] for more details. 

3.2 Hypothesis/Closure Tree 
Using the above event derivation models, an event 𝐸𝐸𝑗𝑗  
indirectly induces a larger set Si(ndirect) of derived events 
than the set Sd(irect) of derived events that are directly 
induced by 𝐸𝐸𝑗𝑗 . We give an example. 
Example 3.3. Consider Figure 3 and the event 𝐸𝐸1(m4, 
“increase by 2 folds”). The set Sd of derived events that are 
directly induced by 𝐸𝐸1 are Sd(𝐸𝐸1) = {𝐸𝐸3(m2, “increase”), 
𝐸𝐸4(m5, “decrease”), 𝐸𝐸5(m6, “decrease”)}. Then, 𝐸𝐸3 in turn 
induces Sd(𝐸𝐸3) = {𝐸𝐸6(m1, “increase”), 𝐸𝐸7(m3, “decrease”), 
𝐸𝐸8(m4, “decrease”), 𝐸𝐸9(m5, “decrease”)}. Similarly, 
𝐸𝐸4 induces Sd(𝐸𝐸4) = {𝐸𝐸10(m2, “decrease”), 𝐸𝐸11(m3, 
“decrease”), 𝐸𝐸12(m4, “increase”), 𝐸𝐸13(m6, “increase”)}. 
Note that some newly derived events may conflict with 
other derived or observed events, and an accurate analysis 
should not include any conflicting events. In example 3.3, 
𝐸𝐸8(m4, “decrease”) which is induced by 𝐸𝐸3(m2, “decrease”) 
is in conflict with 𝐸𝐸1

𝑜𝑜(m4, “increase by 2-fold”). 
Def’n (Conflicting Events): Given two events 𝐸𝐸𝑖𝑖(mi, ci) and 
𝐸𝐸𝑗𝑗 (mj, cj), 𝐸𝐸𝑖𝑖  is conflicst with 𝐸𝐸𝑗𝑗  if  mi = mj and ci ≠ cj. 
Def’n (Event Closure Set): Given an event 𝐸𝐸𝑖𝑖 , let Sd(𝐸𝐸𝑖𝑖) be 
the set of events that are directly induced by 𝐸𝐸𝑖𝑖 . The event 
closure set S+(𝐸𝐸𝑖𝑖) of 𝐸𝐸𝑖𝑖  is the set of all events that are either 

cj = 

    ci  
¬ ci  
¬ ci 

if mj located immediately upstream of mi (Rule1) 
if mj is a co-substrate of mi (Rule2) 
if mj located immediately downstream of mi (Rule3)  



included in Sd(𝐸𝐸𝑖𝑖) or in the event closure set of any event 𝐸𝐸𝑗𝑗  
∈ Sd(𝐸𝐸𝑖𝑖), that is, S+(𝐸𝐸𝑖𝑖) = Sd(𝐸𝐸𝑖𝑖) ∪ [∪𝐸𝐸𝑗𝑗∈𝑆𝑆𝑑𝑑 (𝐸𝐸𝑖𝑖)

S+(𝐸𝐸𝑗𝑗 )] 
where, for any Sd(𝐸𝐸𝑘𝑘), there is no event 𝐸𝐸𝑚𝑚  ∈ Sd(𝐸𝐸𝑘𝑘) such 
that 𝐸𝐸𝑚𝑚  conflicts with 𝐸𝐸𝑘𝑘 . 
Example 3.4. Consider the observed event 𝐸𝐸1

𝑜𝑜(m4, 
“increase by 2-fold”) and the metabolic network of Figure 
3. Then, the closure set of the event 𝐸𝐸1

𝑜𝑜  is S+(𝐸𝐸1
𝑜𝑜) = {𝐸𝐸3(m2, 

“increase”), 𝐸𝐸4(m5, “decrease”), 𝐸𝐸5(m6, “decrease”), 𝐸𝐸6(m1, 
“increase”), 𝐸𝐸7(m3, “decrease”), 𝐸𝐸12(m4, “increase”), 
𝐸𝐸13(m6, “increase”)}.  
Next we define a tree data structure that enumerates all 
derived events from a given observed event.  
Def’n (Closure Tree): Given an event 𝐸𝐸𝑖𝑖(mi, ci), the events 
in S+(𝐸𝐸𝑖𝑖) can be enumerated and represented as a tree 
T+(𝐸𝐸𝑖𝑖), called closure tree, such that (i) the root is 𝐸𝐸𝑖𝑖(mi, 
ci), (ii) each event in S+(𝐸𝐸𝑖𝑖) corresponds to a node in the 
closure tree, (iii) given two events 𝐸𝐸𝑘𝑘(mk, ck), 𝐸𝐸𝑗𝑗 (mj, cj) ∈ 
S+(𝐸𝐸𝑖𝑖),  𝐸𝐸𝑘𝑘(mk, ck) is a child of 𝐸𝐸𝑗𝑗 (mj, cj) if 𝐸𝐸𝑘𝑘(mk, ck) is a 
derived event “induced” by 𝐸𝐸𝑗𝑗 (mj, cj), and (iv) an event 
𝐸𝐸𝑗𝑗 (mj, cj) is a leaf node if (a) no other event can be derived 
from 𝐸𝐸𝑗𝑗 , and/or (b) 𝐸𝐸𝑗𝑗  has an ancestor event 𝐸𝐸𝑘𝑘(mj, ck) 
defined on the same metabolite mj where cj = ck (duplicate, 
marked with “!”), and/or (c) 𝐸𝐸𝑗𝑗  has an ancestor event 𝐸𝐸𝑘𝑘(mj, 
ck) defined on the same metabolite mj where cj = ¬ck 
(conflict, marked with “X”), and/or (d) 𝐸𝐸𝑗𝑗  has an ancestor 
event 𝐸𝐸𝑘𝑘(mj, ck) defined on the same metabolite mj where cj 
= ck (duplicate, marked with “!”).  
Figure 4 shows an example closure tree. 

3.3 Hypothesis Generation 
In this section, we introduce the notion of (low-level) 
hypothesis and define its properties in terms of consistency 
and minimality. 

Def’n (Consistent Event Set): A set S of events said to be 
consistent if there are no two pair of events 𝐸𝐸𝑖𝑖(mi, ci), 
𝐸𝐸𝑗𝑗 (mj, cj) ∈ S such that 𝐸𝐸𝑖𝑖(mi, ci) conflicts with 𝐸𝐸𝑗𝑗 (mj, cj). 

Def’n (Minimal Event Set): Given a set S of events, S is 
said to be minimal if there are no two pair of events 𝐸𝐸𝑖𝑖(mi, 
ci), 𝐸𝐸𝑗𝑗 (mj, cj) ∈ S such that 𝐸𝐸𝑖𝑖(mi, ci) = 𝐸𝐸𝑗𝑗 (mj, cj). 

Def’n (Consistent Minimal Path): Given a root-to-leaf path 
P and the set S of events on P in a closure tree, P is a 
consistent and minimal path if S is consistent and minimal. 

Example 3.5. In Figure 4, the path P1 = {m4↑, m2↑, m1↑,     
} is a consistent and minimal path, while the path P2 = 

{m4↑, m2↑, m4↓} is an inconsistent path since the first and 
the last events in the path are in conflict. 

Definition (Hypothesis): Given an observed event 𝐸𝐸𝑖𝑖𝑜𝑜(mi, 
ci) and its closure tree T+(𝐸𝐸𝑖𝑖𝑜𝑜), a root-to-leaf path P in 
T+(𝐸𝐸𝑖𝑖𝑜𝑜) represents a hypothesis H(𝐸𝐸𝑖𝑖𝑜𝑜) if P is consistent and 
minimal. 

Example 3.6. In Figure 4, consider the consistent path 
{m4↑, m2↑, m1↑, } that is enclosed in dashed-line 
borders. P represents one of the several alternative 
hypotheses for the observed event 𝐸𝐸1

𝑜𝑜(m4, “increase by 2-
fold”). The hypothesis explains the increase in the 
concentration of m4 (i.e., event 𝐸𝐸1

𝑜𝑜) as follows:  
m4↑ : m4 increased, since it was produced more, because: 
m2↑: m2 has increased, i.e., more production due to:  
m1↑: m1, which used to produce m2, has increased, since: 
       : dietary intake of m1 has increased. 

Note that, in the above hypothesis definition, in addition to 
consistency, we enforce minimality of a path in order for it 
to be considered as a hypothesis, mainly, because a 
hypothesis is a transitive causality relationship between the 
events that constitute the hypothesis. Hence, having 

Figure 4. Closure Tree T+(𝐄𝐄𝟏𝟏𝐨𝐨) for Event 𝐄𝐄𝟏𝟏𝐨𝐨(m4, “increase by 2 folds”) 
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duplicate events in the same hypothesis would lead to the 
inference that an event is caused by itself, which is not 
possible without an external cause.  
Finally, a candidate hypothesis that is generated to explain 
an observation should be consistent with the other 
observations that are included in the same biofluid test. 

Definition (Supporting Experiment): Given a hypothesis 
H(𝐸𝐸𝑖𝑖𝑜𝑜) for an observed event 𝐸𝐸𝑖𝑖𝑜𝑜 , and a set OE of observed 
events, H(𝐸𝐸𝑖𝑖𝑜𝑜)  is said to be supported by OE, if there is no 
pair of events 𝐸𝐸𝑗𝑗𝑜𝑜(mj, cj) ∈ OE and 𝐸𝐸𝑘𝑘𝑜𝑜(mk, ck) ∈ H(𝐸𝐸𝑖𝑖𝑜𝑜) 
such that 𝐸𝐸𝑗𝑗𝑜𝑜(mj, cj) conflicts with 𝐸𝐸𝑘𝑘𝑜𝑜(mk, ck). 

Example 3.7. Consider the observed event set OE = 
{𝐸𝐸1

𝑜𝑜(m4, “increase by 2 folds”), 𝐸𝐸2
𝑜𝑜(m1, “increase by 3 

folds”)}. The hypothesis in Example 3.6 is supported by 
OE. Nevertheless, the hypothesis that is represented by the 
path {m4↑, m2↑, m3↓, m1↓, m2↑} in Figure 4 is not 
supported by OE, since the event m1↓ conflicts with 𝐸𝐸2

𝑜𝑜 .  

Problem Statement (Metabolic Network-based 
Observation Analysis Problem): Given a metabolic network 
M, and a set OE of observed events obtained from a 
metabolomics study, the metabolic network-based analysis 
problem is to compute the set P of all (completeness) 
distinct (minimality) hypotheses for the observed events in 
OE such that each hypothesis H ∈ P is supported by OE. 

Time/Space Efficiency of the Chase Process. Each event 
in a closure tree may lead to multiple new events (i.e., 
branches in event closure tree). Therefore, the number of 
generated hypotheses grows exponentially in terms of the 
average number of reactions per metabolite in the 
metabolic network. In more detail, let each metabolite in 
each tissue/bio-fluid be a distinct node in the graph G (V, 
E) representing the metabolic network. Then the worst-case 
time complexity of our approach is the number of paths 
between the bio-fluid metabolite chosen as the root node of 
the closure tree and all other nodes in G. In other words, the 
worst-case time complexity of the OMA method, while 
exponential, is directly related to the sparseness of the 
metabolic network. Note that metabolic networks are 
usually sparse; i.e., the number of edges from a node n 
represents the number of reactions that the metabolite n 
participates as a substrate/product which is usually (but not 
always) a small number ranging from 2 to 5, much less than 
the maximal number of edges |V|. 

3.4 Enhancements on OMA 
We develop a number enhancements on the OMA 
framework to increase its effectiveness. The enhanced 
features include (i) hypothesis ranking based on expected 
flux ratio information, (ii) linking hypotheses to known 
physiological conditions via the overlaps between 
biomarkers (e.g., diabetes and glucose, or cardiovascular 
disease and cholesterol) and metabolites in a hypothesis, 
and (iii) hypotheses set summarization for a more 

manageable view of the generated hypotheses. Due to the 
lack of space, we do not discuss these features here.  For 
more details, please see the extended version [29]. 

4. EXPERIMENTS AND RESULTS 
In this section, we study the computational aspects of our 
metabolomics analysis framework by presenting results on 
an empirical study of hypothesis generation, elimination, 
and summarization. We have also applied OMA on the 
Non-alcoholic Fatty Liver Disease, and successfully 
produced hypotheses that are consistent with (manually 
performed) expert analysis. We could not include our 
results here due to space limitations, but make it available 
as a technical report [31]. We next describe our data set, 
and then present the experimental results. 

4.1 Testbed: PathCaseMAW  
Currently, there are many web-based metabolic network 
data sources, e.g., KEGG [32], Reactome [33], MetaCyc 
[34], or  our own PathCase [35]. However, all of these data 
sources (with perhaps some exceptions for Reactome) lack 
location (i.e., tissue/organ, cell, etc.) information for 
individual pathways. For this study, we have built our own 
prototype database (PathCaseMAW [28]) with organ 
information by manually entering major pathways (mostly, 
from a biochemistry textbook [26] and an atlas of human 
metabolism [27].  Please see table 1 for database content. 

Table 1. Experimental Database Content 
 Amino Acid 

Metabolism  
Carbohydrate 
Metabolism  

Lipid 
Metabolism 

Whole 
Database 

Num. of pathways  28 11 11 50 

Num. of processes  118 68 55 241 

Num. of metabolites 145 52 70 205 

Num. of tissues  5 9 5 9 

Num. of graph nodes 476 426 219 980 

Num. of pathway links 42 31 5 123 

As the metabolomics data set, we have used a subset of the 
sample metabolomics dataset from [36], extended by ten 
additional metabolite measurements. More specifically, this 
dataset contains concentration changes on 34 metabolites:  

 (a) Amino Acid metabolism: {glutamate↑,   pyruvate↑,  
Isoleucine↑,  valine↑,  Leucine↑,  thyroxine↑,  
alanine↑,  kynurenine↑,  Tyrosine↑,   lysine↑,   
glutamine↑,   trans-4-hydroxyproline↑,   alpha-
ketoglutarate↑,   Threonine↑,  serine↑,  creatine↑,  
phenylalanine↑,  citrulline↑,   proline↑,  histidine↑,  
glycine↑,   Methionine↑,  5-hydroxytryptophan↓}, 

 (b) Lipid metabolism:{glycocholate↑,  cholate↑,  
glycerol↑,  palmitate↑,  2-hydroxybutyrate↑, glucose↑,  
cholesterol↑,  linoliate↑,  glycine↑ }, and  

 (c) Carbohydrate metabolism: {pyruvate↑,  isocitrate↑,  
lactate↑,  alpha-ketoglutarate ↑, glucose↑}. 



4.2 Results and Discussion 
In this section, we present a computational analysis of the 
proposed framework.  
(a) Experiment 1: Number of Hypotheses vs. Length 
In this experiment, we study the relationship between the 
maximum allowed hypotheses length (in terms of the 
number of events) and the total number of automatically 
generated hypotheses by the system. In each metabolism, 
the highest changing metabolite (glutamate in aminoacid 
metabolism, glycocholate in lipid metabolism, pyruvate in 
carbohydrate metabolism, glutamate for the whole 
network) was used as the root of the closure tree. Figure 5 
(a, b) depicts the change in the number of hypotheses as we 
increase the maximum hypothesis length.Observation 1: 
As the maximum allowed hypothesis length increases, the 
number of hypotheses generated initially increases 
exponentially until the maximum hypothesis length reaches 
a certain value, and from that point on, the total number of 
hypotheses does not change. 
Since our hypotheses correspond to paths in the whole 
metabolic network, the number of paths gets exponentially 
larger as we span over a larger fraction of the metabolic 
network. However, due to the highly connected nature of 
the metabolic network, after a certain point (at length 70), 
the increase in the number of hypotheses slows down, and 
finally becomes stable as the probability of encountering a 
metabolite which is already included in a hypothesis 
increases (due to the stopping criteria at duplicate or 
inconsistent events during closure tree construction).  
Observation 2: The amino acid metabolism has the highest 
number of m-valid hypotheses, which is followed by the 
carbohydrate metabolism, and, lastly, the lipid metabolism 
has the smallest number of hypotheses. 
The above observation is well-correlated with the size of 
each particular metabolism in our database. Amino acid 
metabolism has the largest number of pathways among the 
three metabolisms. Although the lipid and the carbohydrate 
metabolisms have the same number of pathways, the 

carbohydrate metabolism is significantly more 
interconnected (31 pathway interconnections vs. 5 pathway 
interconnections) than the lipid metabolism. 
Observation 3: In terms of the ratio of invalidated 
hypotheses, the carbohydrate metabolism has the highest 
invalidation rate (90%), which is followed by the lipid 
metabolism (84%), and lastly, the amino acid metabolism 
has the lowest hypothesis invalidation rate (61%). 
Having significantly less number of metabolites (i.e., 52) in 
the lipid metabolism, the probability of creating a duplicate 
event (causing the elimination of a hypothesis) on the same 
metabolite during the closure tree generation is much 
higher in comparison to the amino acid metabolism (i.e., 
145). In fact, for carbohydrate metabolism, 92% of 
hypothesis elimination was due to encountering an already 
visited metabolite in the network (Fig. 5.c). In contrast, the 
same ratio in amino acid metabolism was only 35%. 
 (b) Experiment 2: Invalidated Hypotheses vs. the Number 
of Observed Events 
Eliminating some of the possible hypotheses by utilizing all 
of the existing observed events through an integrative 
approach is one of the essential promises of the proposed 
framework. In this experiment, we investigate the 
contributions of observed events to invalidate a fraction of 
possible hypotheses. Figure 6.a shows the total number 
hypotheses as the number observed events increases.  
Observation 4: Using measurements on 60 metabolites in 
the database reduces the hypotheses set by 99.9%. 
Observation 5: As the number of observations gets larger, 
the number of invalidated hypotheses that we can 
invalidate increases dramatically, which results in over 
94% reduction in the total number of hypotheses when 
measurements on 30 metabolites are employed. 
We have also repeated the same experiment by creating a 
random observed event set, where each metabolite in the 
database had an equal likelihood to be included in the 
observed event set. Similarly, decrease and increase events 
for each metabolite were assumed to occur equally likely. 
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Figure 5. Number of Hypotheses vs. Hypothesis Length 
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Figure 6.b presents the results for a random event set. 
The usefulness of our framework (on a large scale) depends 
on the number of metabolites that can be measured and 
made available to the system. Even with 30 measurements 
from a real data set, we were able to automatically 
eliminate the majority (95%) of hypotheses that are not 
consistent with the measurements. Fortunately, the 
measurement technologies are rapidly getting more 
sensitive and less expensive, which will result in the 
elimination of more and more hypotheses (99.9% with 60 
events for a random event set) before any manual expert 
review is performed. Hence, the above observations prove  

that the proposed metabolic analysis system is promising in 
terms of helping and supporting researchers in their quests 
for interpretations of metabolic observations. 

(c) Experiment 3: Effect of Summarization 

In this experiment, we study the impact of hypothesis 
summarization. For the lack of space, we only present our 
observations. Please see [29] for more details. 
Observation 6: Process-view summarization provides a 
high level condensed view of the whole hypotheses set by 
reducing the total number of hypotheses by 88%. 
Observation 7: As the support threshold increases, the size 
of the summary set dramatically decreases. At support 
thresholds of 0.1 and 0.2, the summary set is 91% and 
98%, respectively, smaller than the original hypotheses set. 

(d) Experiment 4: Running Time Performance Study     

In this experiment, we study the running time behavior of 
our metabolic analysis framework, and the effect of several 
efficiency enhancements that we have developed during 
our implementations. For brevity, we only include our 
observations. Please refer to [29] for the corresponding 
charts and explanations. 
Observation 8: As the maximum hypotheses length 
increases, the running time our system initially increases 
exponentially, and later stabilizes after length 70. 
Observation 9: The early termination approach is 

significantly (97%) more efficient than the baseline 
approach. 

5. CONCLUSIONS 
In this study, we have presented models for 
computationally identifying the mechanisms that produce 
the observed/ measured metabolite changes. To this end, 
biologically motivated event derivation rules are discussed 
to estimate possible concentration changes of metabolites 
which are not measured. We have proposed a data 
structure, called the Closure Tree, to derive new event and 
identify candidate “hypotheses” as explanations for 
observed concentration changes. Moreover, we have 
defined notions of consistency and minimality to eliminate 
hypotheses that are not conforming to the observed events.  
We have evaluated our metabolic analysis framework 
through an empirical study of computational hypothesis 
generation. Our results show that a majority of generated 
hypotheses can be invalidated automatically using the 
provided set of observed concentration changes. 
Furthermore, summarization greatly helps to create a 
manageable, yet effective, view of a large hypothesis set.  
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